论文标题

衡量异质信息网络的多样性

Measuring Diversity in Heterogeneous Information Networks

论文作者

Morales, Pedro Ramaciotti, Lamarche-Perrin, Robin, Fournier-S'niehotta, Raphael, Poulain, Remy, Tabourier, Lionel, Tarissan, Fabien

论文摘要

多样性是与众多研究领域有关的概念,从生态学到信息理论以及经济学,引用了一些概念。这是一个在信息检索,网络分析和人工神经网络社区中稳步关注的概念。尽管在网络结构化数据中使用多样性度量的方法却计算了越来越多的应用程序,但对于可以测量多样性的不同方式,没有明确而全面的描述。在本文中,我们开发了一个正式的框架,用于将大型多样性措施应用于异质信息网络(HINS),这是一种灵活的,广泛使用的网络数据形式主义。这扩展了多样性度量的应用,从分类和分配系统到可以通过网络更好地建模的更复杂的关系。在此过程中,我们不仅提供了来自不同领域的多种实践的有效组织,而且还提供了由异质信息网络建模的系统中的新的可观察物。我们通过开发与多样性和网络相关的各种领域相关的不同应用来说明我们的方法的相关性。特别是,我们说明了这些新提出的可观察物在推荐系统和社交媒体研究领域以及其他领域的有用性。

Diversity is a concept relevant to numerous domains of research varying from ecology, to information theory, and to economics, to cite a few. It is a notion that is steadily gaining attention in the information retrieval, network analysis, and artificial neural networks communities. While the use of diversity measures in network-structured data counts a growing number of applications, no clear and comprehensive description is available for the different ways in which diversities can be measured. In this article, we develop a formal framework for the application of a large family of diversity measures to heterogeneous information networks (HINs), a flexible, widely-used network data formalism. This extends the application of diversity measures, from systems of classifications and apportionments, to more complex relations that can be better modeled by networks. In doing so, we not only provide an effective organization of multiple practices from different domains, but also unearth new observables in systems modeled by heterogeneous information networks. We illustrate the pertinence of our approach by developing different applications related to various domains concerned by both diversity and networks. In particular, we illustrate the usefulness of these new proposed observables in the domains of recommender systems and social media studies, among other fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源