论文标题

通过深图扩散网络学习全球和局部一致的表示图像检索

Learning Global and Local Consistent Representations for Unsupervised Image Retrieval via Deep Graph Diffusion Networks

论文作者

Dou, Zhiyong, Cui, Haotian, Zhang, Lin, Wang, Bo

论文摘要

扩散通过使用图像歧管的高阶结构来提高无监督图像检索系统的准确性方面取得了巨大的成功。但是,现有的扩散方法遭受了三个主要局限性:1)它们通常依靠本地结构而不考虑全球流动信息; 2)他们专注于在现有图像输入输出输入中提高成对的相似性,同时缺乏灵活性来学习新颖的看不见实例的表现; 3)由于整个图表上的内在高阶操作,由于内在的高阶操作而导致的计算负担过高,它们无法扩展到大型数据集。在本文中,为了解决这些局限性,我们提出了一种新颖的方法,即图形扩散网络(Grad-net),该方法采用了图形神经网络(GNNS),这是在不规则图上深度学习算法的新型变体。毕业生通过以无监督的方式利用图像歧管的本地和全球结构来学习语义表示。通过利用稀疏的编码技术,Grad-Net不仅可以保留图像歧管上的全局信息,还可以提供可扩展的培训和有效的查询。在几个大型基准数据集上的实验证明了我们方法对无监督图像检索的最先进扩散算法的有效性。

Diffusion has shown great success in improving accuracy of unsupervised image retrieval systems by utilizing high-order structures of image manifold. However, existing diffusion methods suffer from three major limitations: 1) they usually rely on local structures without considering global manifold information; 2) they focus on improving pair-wise similarities within existing images input output transductively while lacking flexibility to learn representations for novel unseen instances inductively; 3) they fail to scale to large datasets due to prohibitive memory consumption and computational burden due to intrinsic high-order operations on the whole graph. In this paper, to address these limitations, we propose a novel method, Graph Diffusion Networks (GRAD-Net), that adopts graph neural networks (GNNs), a novel variant of deep learning algorithms on irregular graphs. GRAD-Net learns semantic representations by exploiting both local and global structures of image manifold in an unsupervised fashion. By utilizing sparse coding techniques, GRAD-Net not only preserves global information on the image manifold, but also enables scalable training and efficient querying. Experiments on several large benchmark datasets demonstrate effectiveness of our method over state-of-the-art diffusion algorithms for unsupervised image retrieval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源