论文标题
$ 2^{2n} $ - 级别系统的最大纠缠状态的完全人口转移通过毕达哥拉斯三元组耦合
Complete Population Transfer of Maximally Entangled States in $2^{2N}$-level Systems via Pythagorean Triples Coupling
论文作者
论文摘要
最大纠缠的状态在量子信息处理中起着核心作用。尽管多年来取得了很大进展,但在多层系统中对此类州进行操纵的强大协议仍然很少。在这里,我们提出了一个控制方案,该方案可以有效操纵两个最大纠缠状态之间的完全人口转移。利用$ \ mathrm {su} \ left(2 \ right)$的自二重性,我们在这项工作中提出了一个$ {\ mathrm {2}}}^{\ mathrm {\ mathrm {2} n} $ - 与pythagorey sange couts coupling couts couts and One consecon的coullm {\ mathrm {2}}^{\ mathrm {\ mathrm {2} n} $ - 或以上(或以偶数为单位)的(或couse)的总体(或couse)的级别(或couse)。发电机。我们将我们的方法与最近开发的逆行 - 煤炭方案联系起来,并得出了更一般的完整转移配方。我们还讨论了$ \ left(2n \ right)^2 $级别系统的案例,$ \ left(2n+1 \右)^2 $ - 级系统和其他统一组。
Maximally entangled states play a central role in quantum information processing. Despite much progress throughout the years, robust protocols for manipulations of such states in many-level systems are still scarce. Here we present a control scheme that allow efficient manipulation of complete population transfer between two maximally entangled states. Exploiting the self-duality of $\mathrm{SU}\left(2\right)$, we present in this work a family of ${\mathrm{2}}^{\mathrm{2}N}$-level systems with couplings related to Pythagorean triples that make a complete population transfer from one state to another (orthogonal) state, using very few couplings and generators. We relate our method to the recently-developed retrograde-canon scheme and derive a more general complete transfer recipe. We also discuss the cases of $\left(2n\right)^2$-level systems, $\left(2n+1\right)^2$-level systems and other unitary groups.