论文标题
超临界诺伊曼问题的正径向溶液的结构$ \ varepsilon^2Δu-u+u^p = 0 $
Structure of the positive radial solutions for the supercritical Neumann problem $\varepsilon^2Δu-u+u^p=0$ in a ball
论文作者
论文摘要
我们对超批判性noumann问题的积极径向解决方案的结构感兴趣$ \ varepsilon^2Δu-u+u^p = 0 $在$ \ mathbb {r}^n $中的单位球上,其中$ n $是空间维度和$ p> p> p> p_s:=(n+2)/(n+2)/(n+2)/(n+2)/(n+2)/(n+2)/(n-2)$ n $,$ n \ ge 3 $ 3 $ \ ge 3 $ \ ge 3。我们表明存在一个序列$ \ {\ varepsilon_n^*\} _ {n = 1}^{\ infty} $($ \ varepsilon_1^*> \ varepsilon_2^*美元$(\ varepsilon,u(0)$ - 平面。 $ p _ {\ rm {jl}} $尤其是约瑟夫·洛德格伦(Joseph-lundgren)指数,如果$ \ varepsilon \ in \ {\ varepsilon_n^*\} _ { $ \ bar {\ varepsilon}> 0 $,因此,如果$ \ varepsilon> \ bar {\ varepsilon} $,该问题没有常规解决方案。
We are interested in the structure of the positive radial solutions of the supercritical Neumann problem $\varepsilon^2Δu-u+u^p=0$ on a unit ball in $\mathbb{R}^N$ , where $N$ is the spatial dimension and $p>p_S:=(N+2)/(N-2)$, $N\ge 3$. We show that there exists a sequence $\{\varepsilon_n^*\}_{n=1}^{\infty}$ ($\varepsilon_1^*>\varepsilon_2^*>\cdots\rightarrow 0$) such that this problem has infinitely many singular solutions $\{(\varepsilon_n^*,U_n^*)\}_{n=1}^{\infty}\subset\mathbb{R}\times (C^2(0,1)\cap C^1(0,1])$ and that the nonconstant regular solutions consist of infinitely many smooth curves in the $(\varepsilon,U(0))$-plane. It is shown that each curve blows up at $\varepsilon_n^*$ and if $p_{\rm{S}}<p<p_{\rm{JL}}$, then each curve has infinitely many turning points around $\varepsilon_n^*$. Here, $p_{\rm{JL}}$ stands for the Joseph-Lundgren exponent. In particular, the problem has infinitely many solutions if $\varepsilon\in\{\varepsilon_n^*\}_{n=1}^{\infty}$. We also show that there exists $\bar{\varepsilon}>0$ such that the problem has no nonconstant regular solution if $\varepsilon>\bar{\varepsilon}$. The main technical tool is the intersection number between the regular and singular solutions.