论文标题

CNNTOP:基于CNN的轨迹所有者预测方法

CNNTOP: a CNN-based Trajectory Owner Prediction Method

论文作者

Luo, Xucheng, Li, Shengyang, Peng, Yuxiang

论文摘要

轨迹所有者的预测是许多应用程序的基础,例如个性化建议,城市规划。尽管在这个主题上付出了很多努力,但存档的结果仍然不够好。现有方法主要采用RNN来对轨迹进行模型,这是由于轨迹的固有顺序属性。但是,这些方法在兴趣点(POI)表示学习和轨迹特征检测很弱。因此,现有解决方案的性能远非实际应用的要求。在本文中,我们提出了一种基于CNN的新型轨迹所有者预测(CNNTOP)方法。首先,我们根据所有用户的轨迹连接所有POI。结果是一个连接的图,可用于生成比其他方法更具信息性的POI序列。其次,我们采用Node2Vec算法将每个POI编码为低维实际值向量。然后,我们将每个轨迹转换为固定维矩阵,该基质类似于图像。最后,CNN旨在检测特征并预测给定轨迹的所有者。 CNN可以通过卷积操作,批量归一化和$ k $ -max池操作从轨迹矩阵表示中提取信息功能。在实际数据集上进行的广泛实验表明,CNNTOP在宏观精确,宏观回顾,宏F1和准确性方面大大优于现有的解决方案。

Trajectory owner prediction is the basis for many applications such as personalized recommendation, urban planning. Although much effort has been put on this topic, the results archived are still not good enough. Existing methods mainly employ RNNs to model trajectories semantically due to the inherent sequential attribute of trajectories. However, these approaches are weak at Point of Interest (POI) representation learning and trajectory feature detection. Thus, the performance of existing solutions is far from the requirements of practical applications. In this paper, we propose a novel CNN-based Trajectory Owner Prediction (CNNTOP) method. Firstly, we connect all POI according to trajectories from all users. The result is a connected graph that can be used to generate more informative POI sequences than other approaches. Secondly, we employ the Node2Vec algorithm to encode each POI into a low-dimensional real value vector. Then, we transform each trajectory into a fixed-dimensional matrix, which is similar to an image. Finally, a CNN is designed to detect features and predict the owner of a given trajectory. The CNN can extract informative features from the matrix representations of trajectories by convolutional operations, Batch normalization, and $K$-max pooling operations. Extensive experiments on real datasets demonstrate that CNNTOP substantially outperforms existing solutions in terms of macro-Precision, macro-Recall, macro-F1, and accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源