论文标题
TCM-ICP:进行多个激光扫描的转换兼容性度量
TCM-ICP: Transformation Compatibility Measure for Registering Multiple LIDAR Scans
论文作者
论文摘要
在3D映射,机器人导航和大规模的城市建模应用中,多视图和多平台LIDAR扫描的严格注册是一个基本问题。带有LiDAR传感器的数据采集涉及从不同角度扫描多个区域,从而产生现实世界场景的部分重叠点云。传统上,ICP(迭代最接近的点)算法用于将获得的点云一起注册,以形成独特的点云,以捕获扫描的现实世界场景。常规的ICP面临当地的最小问题,通常需要粗略的初始对准才能融合到最佳。在这项工作中,我们提出了一种用于注册多个重叠的激光扫描的算法。我们引入了一个称为变换兼容性度量(TCM)的几何度量,该指标有助于选择算法的每种迭代中最相似的点云。激光扫描与参考LIDAR扫描最相似,然后使用单纯形技术进行转换。然后使用梯度下降和模拟退火技术对转换进行优化,以改善所得的注册。我们在四个不同的现实世界场景上评估了所提出的算法,实验结果表明,该方法的注册性能是可比或优于传统使用的注册方法。此外,即使与异常值打交道,该算法也可以达到卓越的注册结果。
Rigid registration of multi-view and multi-platform LiDAR scans is a fundamental problem in 3D mapping, robotic navigation, and large-scale urban modeling applications. Data acquisition with LiDAR sensors involves scanning multiple areas from different points of view, thus generating partially overlapping point clouds of the real world scenes. Traditionally, ICP (Iterative Closest Point) algorithm is used to register the acquired point clouds together to form a unique point cloud that captures the scanned real world scene. Conventional ICP faces local minima issues and often needs a coarse initial alignment to converge to the optimum. In this work, we present an algorithm for registering multiple, overlapping LiDAR scans. We introduce a geometric metric called Transformation Compatibility Measure (TCM) which aids in choosing the most similar point clouds for registration in each iteration of the algorithm. The LiDAR scan most similar to the reference LiDAR scan is then transformed using simplex technique. An optimization of the transformation using gradient descent and simulated annealing techniques are then applied to improve the resulting registration. We evaluate the proposed algorithm on four different real world scenes and experimental results shows that the registration performance of the proposed method is comparable or superior to the traditionally used registration methods. Further, the algorithm achieves superior registration results even when dealing with outliers.