论文标题

径向点插值混合搭配(RPIMC)方法,用于瞬态扩散问题的解决方案

The Radial Point Interpolation Mixed Collocation (RPIMC) Method for the Solution of Transient Diffusion Problems

论文作者

Mountris, Konstantinos A., Pueyo, Esther

论文摘要

在本文中提出了径向点插值混合搭配(RPIMC)方法,用于瞬时扩散问题。 RPIMC是一种有效的纯无网格方法,其中通过搭配获得场变量的解。与强形式搭配方案相比,现场函数及其梯度都是插值(混合搭配方法),导致$ C $ - 续签的需求减少。该方法的准确性在热传导基准问题中评估。将RPIMC收敛与无网局的Petrov-Galerkin混合搭配(MLPG-MC)方法和有限元方法(FEM)进行了比较。由于RPIMC的Delta Kronecker属性,与MLPG-MC相比,可以提高精度。事实证明,RPIMC是瞬时扩散问题的有希望的无网状替代品。

The Radial Point Interpolation Mixed Collocation (RPIMC) method is proposed in this paper for transient analysis of diffusion problems. RPIMC is an efficient purely meshless method where the solution of the field variable is obtained through collocation. The field function and its gradient are both interpolated (mixed collocation approach) leading to reduced $C$-continuity requirement compared to strong-form collocation schemes. The method's accuracy is evaluated in heat conduction benchmark problems. The RPIMC convergence is compared against the Meshless Local Petrov-Galerkin Mixed Collocation (MLPG-MC) method and the Finite Element Method (FEM). Due to the delta Kronecker property of RPIMC, improved accuracy can be achieved as compared to MLPG-MC. RPIMC is proven to be a promising meshless alternative to FEM for transient diffusion problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源