论文标题

自动关系元学习

Automated Relational Meta-learning

论文作者

Yao, Huaxiu, Wu, Xian, Tao, Zhiqiang, Li, Yaliang, Ding, Bolin, Li, Ruirui, Li, Zhenhui

论文摘要

为了有效地了解有关新任务的少量数据,元学习将从以前的任务中学到的知识转移到了新任务中。但是,元学习的关键挑战是任务异质性,而传统的全球共享元学习方法无法很好地处理。此外,当前特定于任务的元学习方法可能会遭受手工制作的结构设计的困扰,或者缺乏捕获任务之间复杂关系的能力。在本文中,以知识基础中的知识组织的方式进行,我们提出了一个自动的关系元学习(ARML)框架,该框架自动提取交叉任务关系并构建元知识图。当新任务到达时,它可以迅速找到最相关的结构,并将学习的结构知识量身定制为元学习者。结果,所提出的框架不仅可以通过学习的元知识图来解决任务异质性的挑战,而且还可以提高模型的解释性。我们对2D玩具回归和很少的图像分类进行了广泛的实验,结果证明了ARML优于最先进的基线。

In order to efficiently learn with small amount of data on new tasks, meta-learning transfers knowledge learned from previous tasks to the new ones. However, a critical challenge in meta-learning is the task heterogeneity which cannot be well handled by traditional globally shared meta-learning methods. In addition, current task-specific meta-learning methods may either suffer from hand-crafted structure design or lack the capability to capture complex relations between tasks. In this paper, motivated by the way of knowledge organization in knowledge bases, we propose an automated relational meta-learning (ARML) framework that automatically extracts the cross-task relations and constructs the meta-knowledge graph. When a new task arrives, it can quickly find the most relevant structure and tailor the learned structure knowledge to the meta-learner. As a result, the proposed framework not only addresses the challenge of task heterogeneity by a learned meta-knowledge graph, but also increases the model interpretability. We conduct extensive experiments on 2D toy regression and few-shot image classification and the results demonstrate the superiority of ARML over state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源