论文标题
顶点代数相互交织的操作员在广义的Verma模块中的仿射谎言代数
Vertex algebraic intertwining operators among generalized Verma modules for affine Lie algebras
论文作者
论文摘要
我们发现了足够的条件,用于建造仿期lie代数$ \ hat {\ mathfrak {g}} $的广义的Verma模块,从$ \ mathfrak {g} $ - 模块属于模块)。当$ \ mathfrak {g} = \ mathfrak {sl} _2 $时,这些结果扩展了与J. Yang的先前关节工作,但是此处使用的方法不同。在这里,我们通过求解与$ \ hat {\ hat {\ mathfrak {g}} $相关的三点相关函数来构建交织操作员,我们确定了由于具有规定形式的串联解决方案可能不存在的构建所产生的构建障碍。
We find sufficient conditions for the construction of vertex algebraic intertwining operators, among generalized Verma modules for an affine Lie algebra $\hat{\mathfrak{g}}$, from $\mathfrak{g}$-module homomorphisms. When $\mathfrak{g}=\mathfrak{sl}_2$, these results extend previous joint work with J. Yang, but the method used here is different. Here, we construct intertwining operators by solving Knizhnik-Zamolodchikov equations for three-point correlation functions associated to $\hat{\mathfrak{g}}$, and we identify obstructions to the construction arising from the possible non-existence of series solutions having a prescribed form.