论文标题

在高对比度成像中使用数据插补进行信号分离

Using Data Imputation for Signal Separation in High Contrast Imaging

论文作者

Ren, Bin, Pueyo, Laurent, Chen, Christine, Choquet, Élodie, Debes, John H., Duchêne, Gaspard, Ménard, François, Perrin, Marshall D.

论文摘要

为了表征高对比度成像中的偶色系统,基本步骤是为非圆形信号(即恒星光和斑点)构建最佳点扩散函数(PSF)模板,并将其与观察分开。使用现有的PSF构建方法,不可避免地会因过度拟合和/或自我填充而改变偶色信号(例如行星,偶然磁盘),从而使建模是恢复这些信号的必要性。我们使用顺序的非负矩阵分解(DI-SNMF)提出了针对这些问题来解决这些问题的前进模型 - 无用的解决方案。 DI-SNMF首先将此信号分离问题转换为统计中的“丢失数据”问题,该区域将主机信号视为缺少数据,然后将PSF信号归因于这些区域。当插补区域相对较小时,我们从数学上证明它对偶色信号的变化可忽略不计,因此可以对这些偶然物体进行精确的测量。我们将其应用于模拟点源和情节磁盘观测值,以证明其正确恢复它们。我们将其应用于HR 4796A周围碎屑盘的Gemini Planet Imager(GPI)K1波段观测值,发现暂定趋势,随着波长的增加,灰尘会更加向前散射。我们希望DI-SNMF适用于需要信号分离的其他一般情况。

To characterize circumstellar systems in high contrast imaging, the fundamental step is to construct a best point spread function (PSF) template for the non-circumstellar signals (i.e., star light and speckles) and separate it from the observation. With existing PSF construction methods, the circumstellar signals (e.g., planets, circumstellar disks) are unavoidably altered by over-fitting and/or self-subtraction, making forward modeling a necessity to recover these signals. We present a forward modeling--free solution to these problems with data imputation using sequential non-negative matrix factorization (DI-sNMF). DI-sNMF first converts this signal separation problem to a "missing data" problem in statistics by flagging the regions which host circumstellar signals as missing data, then attributes PSF signals to these regions. We mathematically prove it to have negligible alteration to circumstellar signals when the imputation region is relatively small, which thus enables precise measurement for these circumstellar objects. We apply it to simulated point source and circumstellar disk observations to demonstrate its proper recovery of them. We apply it to Gemini Planet Imager (GPI) K1-band observations of the debris disk surrounding HR 4796A, finding a tentative trend that the dust is more forward scattering as the wavelength increases. We expect DI-sNMF to be applicable to other general scenarios where the separation of signals is needed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源