论文标题
针对投影均匀品种的T-量相变的局部操作
Localized operations on T-equivariant oriented cohomology of projective homogeneous varieties
论文作者
论文摘要
在本文中,我们提供了一种一般算法来计算针对代数的定向型均匀g-varieties的代数为导向的共同体,其中g是一个特征性0的分裂的代数群体。使用舒伯特微积分技术。这概括了Garibaldi-Petrov-Semenov提出的一种用于Steenrod操作的方法。我们还表明,与经典的推动式操作员的添加剂类型通勤理论的操作达到了扭曲。
In the present paper we provide a general algorithm to compute multiplicative cohomological operations on algebraic oriented cohomology of projective homogeneous G-varieties, where G is a split reductive algebraic group over a field of characteristic 0. More precisely, we extend such operations to the respective T-equivariant (T is a maximal split torus of G) oriented theories, and then compute them using equivariant Schubert calculus techniques. This generalizes an approach suggested by Garibaldi-Petrov-Semenov for Steenrod operations. We also show that operations on the theories of additive type commute with classical push-pull operators up to a twist.