论文标题
量子电线中的磁磁磁磁磁体由垂直堆叠的量子点组成:呼叫磁极旋风矩阵
The magneto-optics in quantum wires comprised of vertically stacked quantum dots: A calling for the magnetoplasmon qubits
论文作者
论文摘要
对平面量子点和单电子设备和量子计算中的可预见应用的更深层次的优势已经给出了垂直堆叠的量子点(VSQD)。在这里,我们在由垂直堆叠的,自组装的INAS/GAAS量子点组成的量子线中启动了集体激发,在对称仪表中存在施加的磁场的情况下。我们计算并说明了应用磁场对状态,费米能和集体(磁足)激发的行为特征的影响[在随机相近似(RPA)的框架内获得]。观察到Fermi能量是Bloch载体的振荡。值得注意的是,间隔单粒子连续体分为两个,在间隙内传播集体激发。这归因于(轨道)量子数,这是由于施加的磁场。令人惊讶的是,良好和障碍的变化可以使我们能够在所需的能量范围内自定义激发光谱。这些发现首次证明了研究受施加磁场的VSQD的生存力和重要性。出现的技术承诺是通往利用磁极量子矩阵的设备的途径,作为设计量子通信网络的量子门的潜在选择。
A deeper sense of advantages over the planar quantum dots and the foreseen applications in the single-electron devices and quantum computation have given vertically stacked quantum dots (VSQD) a width of interest. Here, we embark on the collective excitations in a quantum wire made-up of vertically stacked, self-assembled InAs/GaAs quantum dots in the presence of an applied magnetic field in the symmetric gauge. We compute and illustrate the influence of an applied magnetic field on the behavior characteristics of the density of states, Fermi energy, and collective (magnetoplasmon) excitations [obtained within the framework of random-phase approximation (RPA)]. The Fermi energy is observed to oscillate as a function of the Bloch vector. Remarkably, the intersubband single-particle continuum splits into two with a collective excitation propagating within the gap. This is attributed to the (orbital) quantum number owing to the applied magnetic field. Strikingly, the alteration in the well- and barrier-widths can enable us to customize the excitation spectrum in the desired energy range. These findings demonstrate, for the very first time, the viability and importance of studying the VSQD subjected to an applied magnetic field. The technological promise that emerges is the route to devices exploiting magnetoplasmon qubits as the potential option in designing quantum gates for the quantum communication networks.