论文标题
t偶尔,雅各比形式和witten gerbe模块
T-Duality, Jacobi Forms and Witten Gerbe Modules
论文作者
论文摘要
在本文中,我们将t二维hori图扩展在[arxiv:hepth/0306062]中,诱导了t-dual Circle捆绑图上的扭曲的共同体的同构,并表明它们诱导了两种可扭曲的同型属性的同构型T d dualles jac cirder cirdiere jac cirder cirdiere jac cirder cirderies toperiies t d d dual cirderies conderies toperies。分级Hori地图及其双重的组成等于Euler操作员。我们还构建了由Gerbe模块引起的Witten Gerbe模块,并表明他们分级的Chern角色是雅各比形式,在Gerbe模块上的异常消失条件下,因此提供了有趣的示例。
In this paper, we extend the T-duality Hori maps in [arXiv:hep-th/0306062], inducing isomorphisms of twisted cohomologies on T-dual circle bundles, to graded Hori maps and show that they induce isomorphisms of two-variable series of twisted cohomologies on the T-dual circle bundles, preserving Jacobi form properties. The composition of the graded Hori map with its dual equals the Euler operator. We also construct Witten gerbe modules arising from gerbe modules and show that their graded twisted Chern characters are Jacobi forms under an anomaly vanishing condition on gerbe modules, thereby giving interesting examples.