论文标题
c* - 来自LCM半群的部分等距表示的代数
C*-algebras from partial isometric representations of LCM semigroups
论文作者
论文摘要
我们通过部分等距表示从取消的半群$ p $中提供了C* - 代数的新结构,从而从第二名作者的论文中概括了构造。然后,当$ P $是LCM Semigroup时,我们详细研究了特殊情况的构建。在这种情况下,我们将代数为逆半群代数和群体代数,并将我们的构造应用于与自相似群体相关的免费半群和Zappa-Szép产品。
We give a new construction of a C*-algebra from a cancellative semigroup $P$ via partial isometric representations, generalising the construction from the second named author's thesis. We then study our construction in detail for the special case when $P$ is an LCM semigroup. In this case we realize our algebras as inverse semigroup algebras and groupoid algebras, and apply our construction to free semigroups and Zappa-Szép products associated to self-similar groups.