论文标题

使用逆优化推断线性可行区域

Inferring Linear Feasible Regions using Inverse Optimization

论文作者

Ghobadi, Kimia, Mahmoudzadeh, Houra

论文摘要

考虑一个问题,其中专家提供了一组可行的观察结果,并定义了一个成本函数,该问题表征了哪些观测值主导了其他观测值,因此是首选。我们的目标是找到一组线性约束,这些约束将使所有给定的观察值可行,同时使首选的成本(客观)功能最佳。通过这样做,我们推断了线性编程问题的隐式可行区域。提供此类可行区域(i)建立了将未来观察结果分类为可行或不可行的基线,并且(ii)允许使用灵敏度分析来识别最佳解决方案的变化,如果目标函数将来会发生变化。 在本文中,我们提出了一个反相反的优化框架,以使用以前的多个观测值作为输入来恢复正向优化问题的约束。我们专注于已知目标函数但约束矩阵的线性模型部分或完全未知。我们提出了一种一般的反优化方法,该方法可恢复完整的约束矩阵,然后引入可易处理的等效重新制定。此外,我们提供并讨论了几个广义损失功能,以根据用户的喜好和历史数据为可行区域的理想特性提供信息。我们的数值示例验证了我们方法的有效性,强调了拟议的措施之间的差异,并为大规模实施提供了直觉。我们进一步使用饮食推荐问题来证明我们的方法,以展示拟议模型如何帮助每个节食者的个性化约束。

Consider a problem where a set of feasible observations are provided by an expert and a cost function is defined that characterizes which of the observations dominate the others and are hence, preferred. Our goal is to find a set of linear constraints that would render all the given observations feasible while making the preferred ones optimal for the cost (objective) function. By doing so, we infer the implicit feasible region of the linear programming problem. Providing such feasible regions (i) builds a baseline for categorizing future observations as feasible or infeasible, and (ii) allows for using sensitivity analysis to discern changes in optimal solutions if the objective function changes in the future. In this paper, we propose an inverse optimization framework to recover the constraints of a forward optimization problem using multiple past observations as input. We focus on linear models in which the objective function is known but the constraint matrix is partially or fully unknown. We propose a general inverse optimization methodology that recovers the complete constraint matrix and then introduce a tractable equivalent reformulation. Furthermore, we provide and discuss several generalized loss functions to inform the desirable properties of the feasible region based on user preference and historical data. Our numerical examples verify the validity of our approach, emphasize the differences among the proposed measures, and provide intuition for large-scale implementations. We further demonstrate our approach using a diet recommendation problem to show how the proposed models can help impute personalized constraints for each dieter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源