论文标题

基于深神经网络的自由形式介电元面建模方法

A Freeform Dielectric Metasurface Modeling Approach Based on Deep Neural Networks

论文作者

An, Sensong, Zheng, Bowen, Shalaginov, Mikhail Y., Tang, Hong, Li, Hang, Zhou, Li, Ding, Jun, Agarwal, Anuradha Murthy, Rivero-Baleine, Clara, Kang, Myungkoo, Richardson, Kathleen A., Gu, Tian, Hu, Juejun, Fowler, Clayton, Zhang, Hualiang

论文摘要

与笨重的几何光学设备相比,元时间表现出在塑造光波前的有希望的潜力。元原子的设计是元整日的基本构建块,依赖于试验方法来实现目标电磁响应。该过程包括具有不同物理和几何参数的大量不同元原子设计的表征,通常需要大量的计算资源。在本文中,引入了基于深度学习的元信息/元原子建模方法,以显着减少表征时间,同时保持准确性。基于卷积神经网络(CNN)结构,提出的深度学习网络能够建模具有自由形式2D模式和不同晶格大小,材料折射率和厚度的元原子。此外,提出的方法具有预测元时间范围内元原子广泛响应的能力,这使其在快速的元/元素/元曲面上点播设计和优化等应用中具有吸引力。

Metasurfaces have shown promising potentials in shaping optical wavefronts while remaining compact compared to bulky geometric optics devices. Design of meta-atoms, the fundamental building blocks of metasurfaces, relies on trial-and-error method to achieve target electromagnetic responses. This process includes the characterization of an enormous amount of different meta-atom designs with different physical and geometric parameters, which normally demands huge computational resources. In this paper, a deep learning-based metasurface/meta-atom modeling approach is introduced to significantly reduce the characterization time while maintaining accuracy. Based on a convolutional neural network (CNN) structure, the proposed deep learning network is able to model meta-atoms with free-form 2D patterns and different lattice sizes, material refractive indexes and thicknesses. Moreover, the presented approach features the capability to predict meta-atoms' wide spectrum responses in the timescale of milliseconds, which makes it attractive for applications such as fast meta-atom/metasurface on-demand designs and optimizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源