论文标题

时间序列数据的生成对抗网络的视觉评估

Visual Evaluation of Generative Adversarial Networks for Time Series Data

论文作者

Arnout, Hiba, Kehrer, Johannes, Bronner, Johanna, Runkler, Thomas

论文摘要

信任机器学习(ML)算法决策的关键因素是培训数据集对其应用程序字段的良好表示。当培训数据的某些部分人为地生成以克服常见的培训问题(例如缺乏数据或不平衡数据集)时,尤其如此。在过去的几年中,生成的对抗网络(GAN)在生成逼真的数据方面表现出了显着的结果。但是,这种ML方法缺乏评估生成数据质量的目标功能。许多GAN应用程序重点是生成图像数据,主要是因为可以通过人眼轻松评估它们。为生成时间序列数据所做的努力减少了。评估其质量更为复杂,尤其是对于技术数据。在本文中,我们提出了一种以人为中心的方法来支持ML或领域专家使用Visual Analytics(VA)技术来完成此任务。提出的方法由两种视图组成,即在生成过程的迭代中显示真实数据和生成数据之间的相似性指标以及配备不同时间序列可视化的详细比较视图,例如时间组织图,以比较不同迭代步骤的生成数据。从GAN迭代视图开始,用户可以选择合适的迭代步骤进行详细检查。我们通过使用使用情况来评估我们的方法,该方案能够对两种不同的GAN模型进行有效的比较。

A crucial factor to trust Machine Learning (ML) algorithm decisions is a good representation of its application field by the training dataset. This is particularly true when parts of the training data have been artificially generated to overcome common training problems such as lack of data or imbalanced dataset. Over the last few years, Generative Adversarial Networks (GANs) have shown remarkable results in generating realistic data. However, this ML approach lacks an objective function to evaluate the quality of the generated data. Numerous GAN applications focus on generating image data mostly because they can be easily evaluated by a human eye. Less efforts have been made to generate time series data. Assessing their quality is more complicated, particularly for technical data. In this paper, we propose a human-centered approach supporting a ML or domain expert to accomplish this task using Visual Analytics (VA) techniques. The presented approach consists of two views, namely a GAN Iteration View showing similarity metrics between real and generated data over the iterations of the generation process and a Detailed Comparative View equipped with different time series visualizations such as TimeHistograms, to compare the generated data at different iteration steps. Starting from the GAN Iteration View, the user can choose suitable iteration steps for detailed inspection. We evaluate our approach with a usage scenario that enabled an efficient comparison of two different GAN models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源