论文标题
构建空间的方法$ s {d^p} [\ mathbb {r}^\ infty] $ for $ 1 \ leq p \ leq p \ leq \ infty $
Approach to the construction of the spaces $ S{D^p}[\mathbb{R}^\infty]$ for $1 \leq p \leq \infty$
论文作者
论文摘要
本文的目的是构造可分离的Banach空间$ s {d^p} [\ MATHBB {r}^\ infty] $,价格为$ 1 \ leq p \ leq p \ leq \ leq \ infty $,每个$都包含$ l^p [\ mathbb {rthbb {r}^\ infty] $ space,以及有限添加的测量。而且这些空间还包含Henstock-Kurzweil集成函数。
The objective of this paper is to construct separable Banach spaces $S{D^p}[\mathbb{R}^\infty]$ for $1\leq p \leq \infty$, each of which contains the $L^p[\mathbb{R}^\infty] $ spaces, as well as finitely additive measures, as compact dense embedding. Also these spaces contains Henstock-Kurzweil integrable functions.